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Abstract. The azimuthal correlations of heavy quarks produced in high energy pp (pp) collisions are cal-
culated in the perturbative QCD without usual assumptions of the parton model. The virtual nature of
the interacting gluons as well as their transverse motion and different polarizations are taken into account
within the framework of the semihard processes theory describing the parton distributions in the region of
the small Bjorken variable x. We give some predictions for the azimuthal correlations of charm and beauty
hadrons produced at Tevatron-collider and LHC. Our approach can be of interest also for HERA energy
region, since it shows a difference with the conventional parton model in the small x domain

1 Introduction

The investigation of the production of heavy quarks in
high energy hadron processes provides a method for study-
ing the internal structure of hadrons. Realistic estimates
of the cross section of the heavy quark production as well
as their correlations are necessary in order to plan exper-
iments on existing and future accelerators. These predic-
tions are usually obtained in the parton model framework
and depend significantly on the quark and gluon structure
functions. The last ones are more or less known experimen-
tally from the data of HERA, but unknown at very small
values of Bjorken variable x < 10−4. However it is just the
region that dominates in the heavy quark production at
high energies.

The Dokshitzer-Gribov-Lipatov-Altarelli-Parisi
(DGLAP) evolution equation is usually applied to calcu-
late the structure functions. It sums up in leading loga-
rithm approximation (LLA) all the QCD diagram contri-
butions proportional to (αs ln q2)n but it does not take
into account the terms proportional to (αs ln 1/x)n, so
this approximation does not give the correct asymptotic
behaviour of the structure function in the small x region.
For the correct description of these phenomena not only
the terms of the form (αs ln q2)n have to be collected in
the Feynman diagrams but also the terms (αs ln 1/x)n

and (αs ln q2 · ln 1/x)n.
Another problem that appears at x ∼ 0 is that of the

absorption (screening) corrections which must stop the
increase of the cross section when x → 0 in accordance
with the unitarity condition. It can be interpreted as sat-
uration of the parton density. For relatively small virtu-
ality q2 ≤ q2

0(x) the gluon structure function behaves as
xG(x, q2) ∼ q2R2, so the cross section for the interaction
of a point-like parton with a target, σ ∼ (1/q2)xG(x, q2) ∼
R2, obeys the unitarity condition. The quantity q2

0(x) can
be treated as a new infrared-cutoff parameter which plays

the role of a typical transverse momentum of partons in
the parton cascade of the hadron in semihard processes.
The behaviour of q0(x) was discussed in [1]. It increases
with log(1/x) and at x = 0.01 − 0.001 the values of q0(x)
are about 2-4 GeV.

The predictions for the cross section value of heavy
quark pair production are based usually on the parton
model calculations [2,3]. In this model all particles in-
volved are assumed to be on mass shell, having only lon-
gitudinal component of the momentum (so called collinear
approximation) and the cross section is averaged over two
transverse polarizations of the gluons. The virtualities q2

of the initial partons are taken into account only through
their densities. The latter are calculated in LLA through
DGLAP evolution equation. The probabilistic picture of
noninteracting partons underlies this way of proceeding.
In the region where the transverse mass mT of the pro-
duced heavy quark Q is close to q0(x) the dependence of
the amplitude of the most important at high energy sub-
process gg → QQ on the virtualities and polarizations of
the gluons should be taken into account, i.e., the matrix
elements of these subprocesses should be calculated more
accurately than is usually done in the parton model.1 The
matrix elements of the QCD subprocesses accounting for
the virtualities and polarizations of the gluons are very
complicated. In our previous paper [9] we presented the
results for main and simplest subprocess, gg → QQ (∼ α2

s)
for hadroproduction and γg → QQ (∼ αs) for photo- and
electroproduction. The contributions of high-order sub-
processes can be essential but our aim is to discuss the
qualitative difference between our results and the parton

1 The results accounting for the virtualities of incident gluons
in a different approach based on k-factorization formulae can
be found, for example, in [4–8]
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model predictions that can be done on the level of low-
order diagrams.

In this paper we calculate the azimuthal correlations
[10] of heavy quarks produced in hadron-hadron collisions
in the lowest (∼ α2

s) order.

2 Cross sections of heavy flavour production
in QCD

The cross section of heavy quarks hadroproduction is
given schematically by the graphs in Fig. 1. The main
contribution to the cross section at small x is known to
come from gluons. The lower and upper ladder blocks
present the two-dimensional gluon distribution ϕ(x, q2

1)
and ϕ(x, q2

2), which are the functions of the fraction (x and
y) of the longitudinal momentum of the initial hadron and
the gluon virtuality. Their distribution over x and trans-
verse momenta qT in hadron is given in semihard theory
[1] by function ϕ(x, q2). It differs from the usual function
G(x, q2):

xG(x, q2) =
1

4
√

2 π3

∫ q2

0
ϕ(x, q2

1) dq2
1 . (1)

Such definition of ϕ(x, q2) makes possible to treat cor-
rectly the effects arising from the gluon virtualities. The
exact expression for this function can be obtained as a
solution of the evolution equation which, contrary to the
parton model case, is nonlinear due to interactions be-
tween the partons in small x region.

In what follows we use Sudakov decomposition for
quark momenta p1,2 through the momenta of colliding
hadrons pA and pB (p2

A = p2
B ' 0) and transverse ones

p1,2T :
p1,2 = x1,2pB + y1,2pA + p1,2T . (2)

The differential cross sections of heavy quarks hadropro-
duction have the form:2

dσpp

dy∗
1dy∗

2d2p1T d2p2T
=

1
(2π)8

1
(s)2

×
∫

d2q1T d2q2T δ(q1T + q2T − p1T − p2T )

× αs(q2
1)

q2
1

αs(q2
2)

q2
2

ϕ(q2
1 , y)ϕ(q2

2 , x)|MQQ|2. (3)

Here s = 2pApB , q1,2T are the gluons’ transverse mo-
menta and y∗

1,2 are the quarks’ rapidities in the hadron-
hadron c.m.s. frame,

x1 = m1T√
s

e−y∗
1 , x2 = m2T√

s
e−y∗

2 , x = x1 + x2

y1 = m1T√
s

ey∗
1 , y2 = m2T√

s
ey∗

2 , y = y1 + y2.
(4)

|Mpp|2 is the square of the matrix element for the heavy
quark pair hadroproduction.

2 We put the argument of αS to be equal to gluon virtuality,
which is very close to the BLM scheme [11]; (see also [12])

In LLA kinematic

q1 ' ypA + q1T , q2 ' xpB + q2T . (5)

so
q2
1 ' −q2

1T , q2
2 ' −q2

2T . (6)

(The more accurate relations are q2
1 = − q2

1T

1−y , q2
2 = − q2

2T

1−x

but we are working in the kinematics where x, y ∼ 0).
The matrix element M is calculated in the Born or-

der of QCD without standart simplifications of the parton
model since in the small x domain there are no grounds
for neglecting the transverse momenta of the gluons q1T

and q2T in comparision with the quark mass and the pa-
rameter q0(x). In the axial gauge pµ

BAµ = 0 the gluon
propagator takes the form Dµν(q) = dµν(q)/q2,

dµν(q) = δµν − (qµpν
B + qνpµ

B)/(pBq). (7)

For the gluons in t−channel the main contribution comes
from the so called ’nonsense’ polarization gn

µν , which can
be picked out by decomposing the numerator into longi-
tudinal and transverse parts:

δµν(q) = 2(pµ
Bpν

A + pµ
Apν

B)/s + δT
µν ≈ 2pµ

Bpν
A/s

≡ gn
µν . (8)

The other contributions are suppressed by the powers of
s. Since the sum of the diagrams in Fig. 1a-1c is gauge
invariant in the LLA, the transversality condition for the
ends of gluon line enables one to replace pµ

A by −qµ
1T /x in

the expression for gn
µν . Thus we get

dµν(q) ≈ − 2
pµ

Bqν
T

x s
, (9)

or

dµν(q) ≈ 2
qµ
T qν

T

xys
, (10)

if we do such a trick for the vector pB too. Both these
equations for dµν can be used but for the form (9) one has
to modify the gluon vertex slightly (to account for several
ways of gluon emission – see [9]):

Γ ν
eff =

2
xys

[(xys − q2
1T ) qν

1T − q2
1T qν

2T

+2x (q1T q2T ) pν
B ]. (11)

As a result the colliding gluons can be treated as aligned
ones and their polarization vectors are directed along the
transverse momenta. Ultimately, the nontrivial azimuthal
correlations must arise between the transverse momenta
p1T and p2T of the heavy quarks.

From the formal point of view there is a danger to
loose the gauge invariance in dealing with the off mass
shell gluons. Say, in the covariant Feynman gauge the new
graphs (similar to the ’bremsstruhlung’ from the initial
or final quark line, as it is shown in Fig. 1d) may con-
tribute in the central plato rapidity region. However this
is not the fact. Within the “semihard” accuracy, when the
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Fig. 1. Low order QCD diagrams for
heavy quark production in pp (pp) colli-
sions via gluon-gluon fusion a–c and the
diagram d formally violating the gauge in-
variance, that is restored within logarith-
mic accuracy

function φ(x, q2) collects the terms of the form αk
s (ln q2)n

×(ln(1/x))m with n + m ≥ k, the triple gluon vertex (11)
includes effectively all the leading logarithmic contribu-
tions of the Fig. 1d type [13,14]. For instance, the upper
part of the graph shown in Fig. 1d corresponds in terms
of the BFKL equation to the t-channel gluon reggeization.
Thus the final expression (17) is gauge invariant (except
a small, non-logarithmic, O(αs) corrections).

Although the situation considered here seems to be
quite opposite to the parton model there is a certain limit,
in which our formulae can be transformed into parton
model ones. Let us consider the pp case and assume now
that the characteristic values of quark momenta p1T and
p2T are much larger than the values of gluon momenta
q1T , q2T

< p1T >�< q1T > , < p2T >�< q2T > (12)

and one can keep only lowest powers of q1T , q2T . It means
that we can put q1T = q2T = 0 everywhere in the ma-
trix element M except the vertices. Introducing the polar
coordinates

d2q1T =
1
2

dq2
1T dθ1 (13)

(and the same for q2T ) and performing angular integration
with the help of the formula

∫ 2π

0
dθ1q

µ
1T qν

1T = π q2
1T δµν

T (14)

we obtain
∫ 2π

0
dθ1

qµ
1T

y

qν
1T

y

∫ 2π

0
dθ2

qλ
2T

x

qσ
2T

x
MµνMλσ

= 2π2 q2
1T q2

2T

(x y)2
|Mpart|2. (15)

Here Mpart is just the matrix element in the parton model,
since the result is the same as that calculated for the real
(mass shell) gluons and averaged over transverse polariza-
tions. Then we obtain the cross section (3) in the form

[2, 3]:

d σ

dy∗
1dy∗

2d2p1T
= |Mpart|2 1

(ŝ)2

×
∫

αs(q2
1)ϕ(y, q2

1T )
4

√
2 π3

αs(q2
2)ϕ(x, q2

2T )
4

√
2 π3

dq2
1T dq2

2T

=
α2

s(q
2)

(ŝ)2
|Mpart|2 xG(x, q2

2) yG(y, q2
1) (16)

where ŝ = xys is the mass square of QQ pair.
However the assumption (12) is not fulfilled in a more

or less realistic case. The transverse momenta of produced
quarks as well as the gluon virtualities (QCD scale values)
should be of the order of heavy quark masses.

3 Azimuthal correlations

Consider the distributions over the azimuthal angle φ,
which is defined as an opening angle between two pro-
duced heavy quarks projected onto a plane perpendicular
to the beam and defined as xy-plane. In the conventional
LO parton model the sum of the produced heavy quarks
momenta projected onto this plane is exactly zero and the
angle between them is always 180o. In the case of NLO
parton model the sum of three momenta (two quark’s and
one gluon’s) in the xy-plane should be equal to zero, there-
fore a non-trivial distribution over φ angle appears.

The theoretical as well as experimental investigation
of such distributions are very important for the control of
the level of our understanding of the considered processes.
The problem is that in the case of one-particle inclusive
distributions for heavy quark production in hadron colli-
sions the sum of LO and NLO contributions of the parton
model practically coinsides [15] with the LO contribution
multiplied by so-called K-factor that is of the order of
1.5 ÷ 2. So in the case of too small or too large NLO con-
tribution the agreement with the experimental data can
be achieved by fitting of one parameter, which can work as
a normalization factor (say, QCD scale). In the case of az-
imuthal correlations all difference from the trivial δ(φ−π)
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distribution comes from NLO contribution to the parton
model.

The experimental data on these correlations are
claimed (see [16] and references therein) to be in disagree-
ment with the conventional parton model predictions for
the cases of charm pair hadro- and photoproduction at
fixed target energies. At the same time the experimen-
tal data on charm azimuthal correlations in different pro-
cesses are in reasonable agreement with each other.

It was shown in [17], that the conventional approach
can describe the experimental data on azimuthal corre-
lations assuming the comparatively large intrinsic trans-
verse momentum of incoming partons (kT kick) equal to 1
GeV/c. However the large intrinsic transverse momentum
significantly changes one-dimentional pT distributions of
heavy flavour hadrons which were earlier in good agree-
ment with the data. It is presented in [17] that the agree-
ment with the data can be re-established using the frag-
mentation function for quark-to-hadron transition pro-
cess.

We shall try to consider another approach, when the
azimuthal correlations of produced heavy quarks in the
small-x region result from the diffusion of transverse mo-
menta in the gluon evolution. This diffusion is described
by the function φ(x, q2), (1), determined in the semihard
theory [1] by the derivative of the gluon distributions. The
matrix element accounting for the gluon virtualities and
polarizations is much more complicate than the parton
model one. That is why we shall consider only LO contri-
bution of the subprocess gg → QQ̄. Note that our mecha-
nism responsible for the appearance of the azimuthal cor-
relations differs from the conventional parton model one,
where the φ-distribution is related to the hard gluon emis-
sion. The NLO azimuthal correlations in our approach can
be estimated as a kind of “convolution” of φ-distributions
of our LO results and the NLO parton model distribu-
tiuon, however there exists a danger of double counting
related to the problem of redefenition of NLO structure
functions [15].

4 Results of calculations

Equation (3) enables to calculate straightforwardly the
distributions over the azimuthal angle φ introduced in
the previous section. Let the first heavy quark flights,
for the definitnes, in the x direction of the xy-plane, i.e.
p1Tx = p1T , p1Ty = 0. In this case cos φ = p2Tx/p2T and
the distribution over φ can be easely evaluated during the
integration of (3) using, say, VEGAS code.

Since the functions ϕ(x, q2
2) and ϕ(y, q2

1) are unknown
at the small values of q2

2 and q2
1 we rewrite the integrals

in (3) as
∫

d2q1T d2q2T δ(q1T + q2T − p1T − p2T )
αs(q2

1)
q2
1

αs(q2
2)

q2
2

×ϕ(q2
1 , y)ϕ(q2

2 , x)|MQQ|2

= 4
√

2 π3αs(Q2
0))

2 xG(x, Q2
0) yG(y, Q2

0)
( |MQQ|2

q2
1q2

2

)
q1,2→0

+ 4
√

2 π3αs(Q2
0)xG(x, Q2

0)
∫ ∞

Q2
0

dq2
1T δ(q1T − p1T − p2T )

× αs(q2
1)

q2
1

ϕ(q2
1 , y)

( |MQQ|2
q2
2

)
q2→0

+ 4
√

2 π3αs(Q2
0) yG(y, Q2

0)
∫ ∞

Q2
0

dq2
2T δ(q2T − p1T − p2T )

× αs(q2
2)

q2
2

ϕ(q2
2 , x)

( |MQQ|2
q2
1

)
q1→0

+
∫ ∞

Q2
0

d2q1T

∫ ∞

Q2
0

d2q2T δ(q1T + q2T − p1T − p2T )

× αs(q2
1)

q2
1

αs(q2
2)

q2
2

ϕ(q2
1 , y)ϕ(q2

2 , x)|MQQ|2 , (17)

where (1) is used3. Thus we obtain the sum of three differ-
ent contributions: the first term in the r.h.s. of (17), w1(φ);
the sum of the second and third terms, w2(φ); and, finally,
the fourth term, w3(φ). The first contribution, w1(φ), is
very similar to the conventional LO parton model expres-
sion, in which the sum of the produced heavy quarks mo-
menta is exactly zero and the angle between them is al-
ways 180o. However the angle between two heavy hadrons
can be sligtly different from this value due to a hadroniza-
tion process. To take it into account we assume that in
the first contribution, where quarks are produced back-to-
back, the probability to find a quark pair with azimuthal
angle φ is determined by the expression

w1(φ) =
ph√

p2
h + p2

T

, (18)

where ph is a transverse momentum in the azimuthal plane
of a hadron coming from hadronization process. The two
last contributions, w2(φ) and w3(φ), result in a more or
less broad distribution over the angle between the pro-
duced quarks so we neglect here their small modification
in a hadronization. The total probability is normalized to
unity, ∫ π

0
dφ(w1(φ) + w2(φ) + w3(φ)) = 1 . (19)

It is necessary to repeat, that our approach is justified
only at small x region, that is at the high enough initial
energies. Unfortunately, the highest energy, where the ex-
perimental data on charm azimuthal correlations exist, is
only

√
s = 39 GeV [16]. The values of q2

1 and q2
2 in (3)

giving an essential contributions to the charm production
cross section are not large enough at this energy, so at not
very small Q2

0 value the first contribution in (17) dom-
inates and our predictions coinside practically with the
results of LO parton model.

At the higher energies the second and third contri-
butions become larger and here we get some difference
with the conventional parton model. The predictions of
the charm pair azimuthal correlations with GRV HO [18]
parton distributions at

√
s = 1800 GeV and Q2

0 = 4 GeV2

3 The value of Q2
0 should not be mixed here with the function

q2
0(x) discussed in the Introduction
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Fig. 2. The calculated azimuthal correlations of charm pair
production in pp (pp) collisions at

√
s = 1800 GeV a and√

s = 14 TeV b for all events (solid histograms) and for the
events, where both charm particle have pT > pTmin (dashed
hystograms)

are presented in Fig. 2a. The solid hystogram shows the
results for all produced charm particles. However in this
case some hadronization mechanism can contribute to the
azimuthal correlations of charmed hadrons with small rel-
ative momenta. To decrease this uncertainity we present
by dashed histogram the same results for the events, where

Fig. 3. The calculated azimuthal correlations of beauty pair
production in pp (pp) collisions at

√
s = 1800 GeV a and 14

TeV b for all events (solid histograms) and for the events, where
both beauty particle have pT > pTmin (dashed histograms)

both charmed hadrons have the transverse momenta pT >
pTmin, pTmin = 4 GeV/c.

The results at the energy
√

s = 14 TeV are shown in
Fig. 2b. Note that the predicted azimuthal correlations
are energy dependent, they become more broad with the
increase of the initial energy, although this energy depen-
dence is weak, especially in the case of pTmin = 0. Our
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Fig. 4. Gluon structure function of the nucleon [18] without
(solid curve) and with (dashed curve) shadow correction, (19)

φ-distributions seem to be more broad than the results of
the parton model calculations.

The similar predictions for the beauty pair azimuthal
correlations at the energies

√
s = 1800 GeV and 14 TeV

are presented in Fig. 3 for two values of pTmin: 0 and
8 GeV/c. At the both values of pTmin the distributions
become more broad, when the energy increases.

Contrary to the parton model results we predict two
peaks for all cases: the standard one at φ = 180o and the
second peak with smaller altitude, at φ = 0o originated
from the contribution of the diagram Fig. 1c.

The HERA experimental data on F2(x, Q2) at small
x, actually 10−4 < x < 10−2, show a singular x-behaviour
at moderate Q2 (say, Q2 ∼ 101 GeV2). Both ZEUS [19] as
well as H1 [20] Coll. data can be parametrized as x−δ with
δ = 0.1 ÷ 0.25. Such a behaviour at x → 0 is in evident
contradiction with the unitarity and has to be stopped by
a shadow mechanism [1,21,22].

To see the possible influence of shadow effects on the
azimuthal correlations we make a simplest assumption,
that the shadowing modifies the gluon distribution in such
a way, that the real distribution can be written as

xG(x, Q2) =
xG0(x, Q2)

1 + εxG0(x, Q2)
, (20)

where ε � 1 and xG0(x, Q2) is the bare GRV (HO) gluon
distribution [18]. Both xG(x, Q2) and xG0(x, Q2) distri-
butions are shown in Fig. 4 for the value ε = 0.01. One
can see that the difference between them at the smallest
x, where the data exist (x ∼ 10−4), is about 10 %.

The calculated results for azimuthal correlations of
heavy flavour pairs with “shadowed” gluon distributions,

Fig. 5. The calculated azimuthal correlations of charm a and
beauty b pair production in pp (pp) collisions at

√
s = 14 TeV

for all events (solid histograms) and for the events, where both
heavy flavour particle have pT > pTmin (dashed histograms)

(20), are presented in Fig. 5 and show that the shadowing
does not significantly affect our results.

5 Conclusion

The above discussion shows that the accounting for the
virtual nature of the interacting gluons as well as their
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transverse motion and different polarizations result in a
qualitative differences with the parton model predictions.
The reason is that the NLO parton model allows the dis-
cussed distributions to differ from δ-functions only due to
a possibility of one hard gluon emission. In contrast, our
approach effectively incorporates the emission of all evolu-
tion gluons via the phenomenological gluon distribution.
It gives a possibility to distinct experimentally between
these two approaches. In the parton model practically all
events with φ significantly smaller than π should be ac-
companied by hard gluon jet, whereas in our approach
we can expect such jet only with some (not very large)
probability.
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